博客
关于我
Python基于TensorFlow深度学习卷积神经网络自动识别网站验证码设计
阅读量:166 次
发布时间:2019-02-27

本文共 431 字,大约阅读时间需要 1 分钟。

开发环境:Pycharm + Python3.7 + Django2.2 + SQLite数据库 + TensorFlow深度学习框架 + Selenium自动化测试

基于深度网络的网站验证码识别研究与实现

本项目利用卷积神经网络(CNN)基于TensorFlow平台,构建了一个三层卷积两层全联接的模型,训练出准确率达到91.3%的验证码识别模型。同时,基于Django构建了一个登录系统,并结合Selenium实现了自动化测试,完成了从验证码识别到自动登录的全流程。

模型结构采用传统的CNN架构,包括卷积层、池化层和全连接层。通过对训练数据的多轮训练,模型能够准确识别验证码,并且在实际应用中表现稳定。Django框架用于构建用户登录界面,Selenium则用于实现自动化测试,确保验证码识别系统的稳定性和可靠性。

项目整体完成了从图像识别到自动化登录的全过程,验证了深度学习技术在验证码识别中的有效性,同时也验证了Django和Selenium的可靠性。

转载地址:http://gcmf.baihongyu.com/

你可能感兴趣的文章
OA项目之我的审批(会议查询&会议签字)
查看>>
OA项目之项目简介&会议发布
查看>>
Object c将一个double值转换为时间格式
查看>>
object detection之Win10配置
查看>>
object detection训练自己数据
查看>>
object detection错误Message type "object_detection.protos.SsdFeatureExtractor" has no field named "bat
查看>>
object detection错误之Could not create cudnn handle: CUDNN_STATUS_INTERNAL_ERROR
查看>>
object detection错误之no module named nets
查看>>
Object of type 'ndarray' is not JSON serializable
查看>>
Object Oriented Programming in JavaScript
查看>>
object references an unsaved transient instance - save the transient instance before flushing
查看>>
Object.assign用法
查看>>
Object.create
查看>>
Object.keys()的详解和用法
查看>>
objectForKey与valueForKey在NSDictionary中的差异
查看>>
Objective - C 小谈:消息机制的原理与使用
查看>>
OBJECTIVE C (XCODE) 绘图功能简介(转载)
查看>>
Objective-C ---JSON 解析 和 KVC
查看>>
Objective-C 编码规范
查看>>
Objective-Cfor循环实现Factorial阶乘算法 (附完整源码)
查看>>