博客
关于我
Python基于TensorFlow深度学习卷积神经网络自动识别网站验证码设计
阅读量:166 次
发布时间:2019-02-27

本文共 221 字,大约阅读时间需要 1 分钟。

开发环境: Pycharm + Python3.7 + Django2.2 + sqlite数据库 + TensorFlow深度学习框架 + selenium自动化测试

“基于深度网络的网站验证码识别研究与实现”:主要是利用卷积神经网络,基于TensorFlow平台,构建了三层卷积两层全联接模型,训练出的一个准确率为91.3%的识别模型。再基于Django构建登陆系统,使用selenium实现自动测试,完成验证码从识别到自动登录的全过程。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

转载地址:http://gcmf.baihongyu.com/

你可能感兴趣的文章
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 深度分页性能急剧下降,该如何优化?
查看>>
MySQL 添加列,修改列,删除列
查看>>
mysql 添加索引
查看>>
MySQL 添加索引,删除索引及其用法
查看>>
MySQL 用 limit 为什么会影响性能?
查看>>
MySQL 用 limit 为什么会影响性能?有什么优化方案?
查看>>
MySQL 用户权限管理:授权、撤销、密码更新和用户删除(图文解析)
查看>>
mysql 用户管理和权限设置
查看>>
mysql 的GROUP_CONCAT函数的使用(group_by 如何显示分组之前的数据)
查看>>
MySQL 的instr函数
查看>>
MySQL 的mysql_secure_installation安全脚本执行过程介绍
查看>>
MySQL 的Rename Table语句
查看>>
MySQL 的全局锁、表锁和行锁
查看>>
mysql 的存储引擎介绍
查看>>
MySQL 的存储引擎有哪些?为什么常用InnoDB?
查看>>
mysql 索引
查看>>
MySQL 索引失效的 15 种场景!
查看>>
MySQL 索引深入解析及优化策略
查看>>
MySQL 索引的面试题总结
查看>>